Treatment of Solid Cancers by Adoptive Cell Transfer of Tumor-Infiltrating Lymphocytes Targeting Mutated Tumor Antigens

Steven A. Feldman, Ph.D.
Surgery Branch, NCI
March 8, 2017
Outline

- Background
- Targeting neoantigens to extend adoptive cell therapy for the treatment of solid cancers
Three Main Approaches to Cancer Immunotherapy

1. Non-specific stimulation of immune reactions
 - Stimulate effector cells (IL-2, IL-12)
 - Inhibit regulatory factors (PD-1, CTLA-4)

2. Active immunizations to enhance anti-tumor reactions
 - Cancer vaccines

3. Passively transfer activated immune cells with anti-tumor activity
 - Adoptive cell transfer
A Critical Challenge Confronting the Development of Human Cancer Immunotherapy is the Identification of Antigens to Target

1. Differentiation antigens overexpressed on cancers compared to normal tissue (MART-1, gp100, CEA, Her-2, Mesothelin)

2. Antigens expressed on cancers and on non-essential normal tissues (CD19, thyroglobulin)

3. Shared antigens unique to cancer (cancer-testes antigens, NY-ESO-1, MAGE-A)

4. Critical components of the tumor stroma (VEGFR2, FAP)

5. Mutations unique to each cancer (EGFRvIII, Neoantigens)
Outline

• Background
• Targeting neoantigens to extend adoptive cell therapy for the treatment of solid cancers
Adoptive Cell Transfer for Patients with Breast Cancer

• About 1 in 8 (12%) women in the US will develop invasive breast cancer during their lifetime.

• Each year, approximately 41,000 people die of metastatic breast cancer (ACS Facts and Figures 2017).

• Breast TIL are a prognostic indicator associated with improved pathologic complete response to neoadjuvant therapy (Salgado et al, JAMA Oncol 2015) and survival (Adams et al, J Clin Oncol 2014).

A strategy for Assessing T-cell reactivity Against Mutated Antigens in Solid Tumors

1) IFN-γ ELISPOT
2) 4-1BB/OX40 upregulation

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>ER</th>
<th>PR</th>
<th>Her2</th>
<th>Resection Site</th>
<th>Mutation #</th>
<th>Reactivity</th>
<th>Treatment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>4051</td>
<td>35</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>liver</td>
<td>108</td>
<td>No</td>
<td>Bulk TIL</td>
<td>NR</td>
</tr>
<tr>
<td>4062</td>
<td>61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>lung</td>
<td>72</td>
<td>Yes</td>
<td>N/A</td>
<td>-</td>
</tr>
<tr>
<td>4099</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>lymph node</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4125</td>
<td>48</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>liver</td>
<td>136</td>
<td>No</td>
<td>DP4 TCR</td>
<td>NR</td>
</tr>
<tr>
<td>4130</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>lung</td>
<td>206</td>
<td>Yes (preliminary)</td>
<td>DP4 TCR</td>
<td>NR</td>
</tr>
<tr>
<td>4131</td>
<td>42</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>lymph node</td>
<td>85</td>
<td>Yes</td>
<td>Bulk TIL</td>
<td>NR</td>
</tr>
<tr>
<td>4136</td>
<td>49</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>subQ</td>
<td>139</td>
<td>Yes</td>
<td>Selected TIL</td>
<td>CR (14+)</td>
</tr>
<tr>
<td>4180</td>
<td>51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lung</td>
<td>121</td>
<td>Yes</td>
<td>Selected TIL</td>
<td>TRM</td>
</tr>
<tr>
<td>4186</td>
<td>63</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>lymph node</td>
<td>148</td>
<td>Yes</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>
CD4/CD8 Ratios of Breast TIL

![Graph showing CD4+ and CD8+ cell percentages in ressected tumor IDs.](chart.png)

- CD4+ cell percentages range from 10% to 80%.
- CD8+ cell percentages range from 20% to 100%.

Resected tumor ID: 4051, 4062, 4099, 4125, 4130, 4131, 4136, 4180, 4186.
Pt J.A. (4136) – Patient History

• 49 year old woman
• 2003 – diagnosed with DCIS, mastectomy (L) and axillary dissection
• 2013 – relapsed with widespread invasive cancer ER+, PR+, Her2-
• Multiple treatments:
 – chemotherapy regimens: paclitaxel, capecitabine, vinorelbine, docetaxel, doxorubin, and cyclophosphamamide
 – Multiple endocrine regimens
 – Progressed through trial of lucitanib (last dose July 28, 2015)
• 2015 (August) – resection of right breast tumor for TIL generation and mutation analysis
• Interim treatment: Everolimus
• 2015 (December) – progressive disease (liver, LN, soft tissue and bony tumors)
 – Adoptice cell transfer (mutation-reactive TIL, 7.9e10 cells)
Targeting Immunogenic Mutations in Breast Cancer (Pt 4136)

Screen I (peptide pools)

71 mutations screened

- OKT3
- TIL only
- PP6
- PP5
- PP4
- PP3
- PP2
- PP1
- P0

IFN-γ spots / 2x10⁴ cells
Regression of Metastatic Breast Cancer After Adoptive Cell Transfer of Tumor Infiltrating Lymphocytes and Checkpoint Blockade
Summary

• 6/8 patients with breast cancer had mutation-reactive TIL
• TIL targeting nonsynonymous mutations may be able to mediate objective tumor regressions
 • PT 4136 is experiencing an ongoing response and is now a CR at 14+ months
• Efforts are underway to treat patients using gene-engineered T cells directed against tumor-specific neoantigens
Future Clinical Efforts: To Genetically Engineer T-Cells to Express Receptors Reactive Against Mutated Neoantigens in Patients with Metastatic Cancer

Clone mutation-reactive TCRs

Gene-engineer PBL

- Gammaretroviral vectors
- Transposons
- Gene editing and Targeted insertion
Acknowledgments

Surgery Branch, NCI
Steven A. Rosenberg, Chief
Stephanie Goff
Paul Robbins
Jared Gartner
Li Jia
Todd Prickett
William Lu
Zhili Zheng

FACS LAB
Arnold Mixon
Shawn Farid
Clinical Staff

Cell Production Lab
Robert Somerville
Tom Shelton
Linda Parker
Azam Nahvi
Lily Lu
John Wunderlich

“The Patients and their families”

Vector Production Lab
Nikolaos Zacharackis
Hui Xu
Mary Black
Harshini Chinnasamy