Enabling T-Cell Therapies for Solid Tumors with Oncolytic Immunotherapy

March 9, 2017
World ADOPT Summit, London
Adoptive Cell Immunotherapies

Aino Kalervo
Head of Business Management
TILT Biotherapeutics Ltd.
Objectives and Outline

1. Overview of TILT Biotherapeutics
2. Review oncolytic virus pipeline
3. TILT’s latest preclinical results
4. Conclusion
TILT Biotherapeutics in a Nutshell

☑ Founded in 2013 by Professor Akseli Hemminki, MD, PhD, CEO
☑ Enabling T-cell therapy of solid tumors via oncolytic viruses
☑ Synergistic with all T-cell therapy strategies including TILs, CAR-T, TCR and anti-PD1 antibodies
☑ TILT technology is based on observations and data of 290 patients treated with 10 oncolytic viruses in 2007-2012 (ATAP, human data) and research conducted by Univ. of Helsinki CGTG in 2002-2016
☑ Lead product (TILT-123) is a preclinical stage TNFα/IL2 armed oncolytic adenovirus
 - Preclinical PoC is done
 - EMA Scientific Advice & ATMP classification obtained
 - First Phase I trial estimated start 2018
Current Challenges and TILT’s solution

- Adoptive T-cell therapy of humans has yielded promising results in TIL therapy of metastatic melanoma
- But it is associated with severe side effects due to pre-conditioning chemotherapy and post-conditioning IL-2
- CAR-T: good results in CD19+ leukemia, not working in solid tumors
- Checkpoint inhibitors (CPI) work in many or most tumor types, but only 10-50% of patients are benefiting
- CPI work in tumors which are inflamed (PD1L+, TIL+, neoantigen+ etc)
- CPI don’t work in tumors which are immunologically cold or immune excluded

Solution provided by TILT

- Oncolytic viruses can change cold and excluded tumors into hot inflamed tumors
- Adenovirus is the most potent stimulator of T-cells
- Adenoviruses are the perfect enabler of checkpoint inhibition in cold and excluded tumors
- TILT-123 is the only virus designed specifically for T-cell stimulation: arming with IL2 and TNFa
- Improved safety: pre-conditioning chemo and post-conditioning IL-2 not needed
Clinical Readiness After…

10 years of clinical observations, product development, and optimization

- Clinical data with oncolytic viruses
- Advancements in immunotherapy and founding of TILT
- TILT-123’s virus backbone demonstrated safe in clinic
- TILT concept and TILT-123 product patent protected
- TILT-123 preclinical PoC with TILs, CAR-T, and anti-PD1

Phase I trials

- Partner or develop ourselves

- Clinical Data from 50-80 Patients

- 2013: TILT Biotherapeutics founded
- 2014: ATAP* 290 patients treated with 10 different oncolytic viruses
- 2015: TILT technology optimized in the lab
- 2016-2017: Lead candidate: TILT-123
- 2016-2017: GMP manufacturing
- 2016-2017: Regulatory preclinical studies
- 2016-2017: Scientific Advice
- 2016-2017: Pre-IND meet

2018-2020: Phase I trials
- TILT-123+TILs
- TILT-123 + anti-PD1
- TILT-123 + CAR-T

2020-2022: Phase II
- 2023-2026: Phase III
- 2027: Launch

- Up to date, almost 10M€ in funding (equity, loan, grants) secured
- TILT is fully funded for preclinical GLP, 1 GMP Phase I batch, Phase I trial TILT-123 + TILs in EU
- Renown VC and 4-8M€ funding sought for additional Phase I trial(s)

*Advanced Therapy Access Program
<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PROJECT</th>
<th>DISCOVERY</th>
<th>PRECLINICAL</th>
<th>REGULATORY</th>
<th>PHASE I</th>
<th>KEY PROBLEMS ADDRESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILT-123</td>
<td>TIL, melanoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tox of pre- and post-conditioning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trafficking, T-cell anergy and exhaustion</td>
</tr>
<tr>
<td>TILT-234</td>
<td>anti-PD1, melanoma / other solid tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lack of TILs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trafficking, T-cell anergy and exhaustion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Partner & funding sought</td>
</tr>
<tr>
<td>TILT-321</td>
<td>CAR-T, mesothelin+ solid tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Partner & funding sought</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trafficking, T-cell anergy and exhaustion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Partner & funding sought</td>
</tr>
<tr>
<td></td>
<td>Dendritic cell therapy, solid tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intravenous use</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enables dendritic cell therapy</td>
</tr>
<tr>
<td></td>
<td>Solid tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recruitment and activation of T-cells to tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Local delivery of therapeutic molecules reducing side effects</td>
</tr>
</tbody>
</table>

Product description (oncolytic adenovirus):

- **TILT-123**: Ad5/3-E2F-delta24-hTNFa-IRES-hIL2
 (Ref: Havunen et al. 2016)
- **TILT-234**: Ad3-hTERT-CMV-hCD40L
 (Ref: Parviainen et al. Poster. 2016)
- **TILT-321**: Ad5/3 coding for a bispecific antibody
 (Ref: to be published)
Clinical Trial Readiness

- Scientific Advice with EMA is done, ATMP classification obtained
- GMP grade virus production of TILT-123 on-going with an experienced CMO
- Three different clinical trials (TILT-T215, TILT-T392, TILT-T401) will be started in combination with synergic technologies (TILs, anti-PD1 antibody, CAR-T cells)
TILT Biotherapeutics - Non-Confidential - 2017

Company and Board

- TILT was founded in 2013 by Akseli Hemminki (MD, PhD, Professor of Oncology at Univ. of Helsinki)
- Company is led by an experienced board and has a Scientific Advisory Board with world’s leading experts, as well as pre-clinical collaborations with renown research groups

Board of Directors

- Akseli Hemminki
 Chairman & CEO, TILT Biotherapeutics
- Timo Ahopelto
 Lifeline Ventures
- Arto Linnervuo
 Roschier Attorneys
- Veli-Matti Riihimäki
 Medical Entrepreneur and Investor

Scientific Advisory Board

- Brigitte Dreno (MD, PhD)
 Nantes University Hospital, France
- Viktor Umansky (PhD)
 German Cancer Research Center DKFZ
- Petri Bono (MD, PhD)
 Cancer Center at Helsinki University Central Hospital
- Tanja de Gruijl (PhD)
 University Medical Cancer Center in Amsterdam
- Inge Marie Svane (MD, PhD)
 Herlev University Hospital, Denmark
- Ramon Alemany (PhD)
 ICO Barcelona, Spain

Pre-clinical Collaborations

CGTG at University of Helsinki
Carl June (U Penn), leader of the field of cancer T-cell therapy
Viktor Umansky (T cell immunology, DKFZ)
Market and Oncolytic Virus Pipeline
Unmet Medical Need and Market with Significant Growth

8 million
Deaths of cancer each year (2012)

from 14 to 24 million
New cases of cancer each year (2012–2030)

$30B++
Projected market value of cancer immunotherapies in 10 years worldwide

90%
Percentage of solid tumors of all cancers

50-90%
Percentage of patients that will not respond to current T-cell therapies and checkpoint immunotherapies
Amgen’s Imlygic (T-VEC/ talimogene laherparepvec) became the first oncolytic virus to gain approval in a Western jurisdiction with FDA and EMA approvals in melanoma in 2015

Oncolytic viruses are today finding their place in immuno-oncology combination regimens

Over the past years T-cell therapy companies and oncolytic virus companies have raised over $3 billion funding

- T-cell therapy (including CAR-T, TILs) : $2,900 million
- Oncolytic viruses: $360 million

TILT has developed and protected a unique technology for combination use, enabling T-cell therapies in solid tumors via oncolytic viruses

“OUR VIEW IS ANYONE IN THE IMMUNO-ONCOLOGY SPACE SHOULD HAVE AN ONCOLYTIC VIRUS.”
Oncolytic viruses – Pipeline - Projects

- Adeno and pox (vaccinia) viruses are the most commonly used virus types.
- These projects have lead to over 200 clinical trials worldwide.
- The most studied indication is melanoma, followed by head and neck, colorectal, NSCLC, and ovarian cancers.
- Several clinical stage candidates are GM-CSF armed, preclinical stage projects are starting with arming viruses with other molecules.
- Several combination trials have been initiated with anti-PD1.
- Combination trials with T-cell approaches are rare.
Science
Clinical Observations from ATAP

- Immunological reactions seen in cancer patients
 1. Inflammation
 2. Lymphocytes redistribute from blood
 3. Accumulation of T cells in tumors

- Safety of the TILT virus backbone (Ad5/3) established in patients

Kanerva et al., Clin Cancer Res 2013.
Ranki et al., Oncoimmunology 2014.
Lead clinical product TILT-123: Ad5/3-E2F-delta24-hTNFa-IRES-hIL2

- Oncolytic platform enhances epitope presentation and local anti-immunosuppressive "danger signals"
- Viral replication occurs only in cancer cells
 - E2F promoter and 24 bp deletion in E1A limit replication to cells defective in p16-Rb pathway (cancer cells)
- Expression of TNFα and IL2 is coupled to virus replication
- Ad5/3 chimera: Ad5 fiber knob replaced with Ad3 knob
 - Improved cancer cell transduction and antitumor efficacy
Highly Optimized Construct for Safety and Efficacy

- Enhanced cancer cell transduction and killing – Ad 5/3 chimeric
- High selectivity and efficacy through 5 genetic modifications
- Safety demonstrated in humans with the TILT virus backbone
- Transduction of distant metastasis through the vasculature in humans (IV, IT)
- Armed with the most potent cytokines for combinatory use with ACT in solid tumors: IL2 and TNFa
- High local levels of cytokines produced at the tumor – no systemic exposure
- Memory response with the armed virus
The core preclinical proof in solid tumors: Can adenovirus overcome resistance of tumor to ACT?

Adoptive T-cells have higher efficacy with virus

Ad5/3-viruses delivered by IT studied in B16.OVA melanoma tumors in C57BL/6 mice with adoptive ovalbumin specific CD8+ T-cell therapy (OT-I)

Which cytokine(s) are the best for virus arming for adoptive T cell therapy in solid tumors?

Figure. Systematically administered recombinant cytokines in B16.OVA melanoma tumors in C57BL/6 mice with adoptive ovalbumin specific CD8+ T-cell therapy (OT-I).

- Close to 100% efficacy of IL-2 and TNFα in combination with OT-I demonstrated
- Favorable alteration of tumor microenvironment by IL-2 and TNFα for efficient T-cell therapy in solid tumors

Adenovirus coding for TNFa+IL2 selected as the lead into clinical trials

Figure 3. Ad5-CMV-mTNFa/Ad5-CMV-mIL2 dual virus combination together with adoptive T cell transfer. Adenoviruses coding for mTNFa and mIL2 were combined in a 1 to 1 ratio (0.5 x 10^9 VP of each virus) to treat B16-OVA tumors together with adoptive transfer of 1.5 x 10^6 CD8-enriched OT-I T-cells. Virus treatments continued every 7 days. Error bars, SE. *p<0.05, ***p<0.001.

✓ Improved antitumor efficacy with adenoviruses coding for TNFa and IL2 when compared with T-cell therapy alone or the virus alone

Curative efficacy and PoC with TILT-123

Figure 4. Syrian hamsters with established subcutaneous HapT1 tumors

Curative efficacy with oncolytic adenovirus: PoC with TILT-123

✓ Tumor rechallenge indicates memory response induced by TNFa+IL2 armed viruses: hamsters previously cured with cytokine-armed viruses resist same tumor type (HapT1) but not different one (DDT1-MF2)

Problems in T cell therapy of solid tumors

1. T-cells (the graft) don’t find their way to the tumor
2. The graft becomes anergic due to tumor immunosuppression
3. T-cell fail to propagate (no amplification signals at tumor)
4. Resistance develops via a target-negative clone
5. Pre- and post-conditioning cause severe toxicity

- **TNFa:**
 - ✓ danger signaling
 - ✓ trafficking
- **IL2:**
 - ✓ Activation
 - ✓ Propagation
 - ✓ Reversion of exhaustion

Problems in T cell therapy of solid tumors

1. T-cells (the graft) don’t find their way to the tumor
2. The graft becomes anergic due to tumor immunosuppression
3. T-cell fail to propagate (no amplification signals at tumor)
4. Resistance develops via a target-negative clone
5. Pre and post-conditioning cause severe toxicity

Santos in preparation.
Epitope spreading: increase in the number of "natural" anti-tumor T-cells

1. T-cells (the graft) don’t find their way to the tumor
2. The graft becomes anergic due to tumor immunosuppression
3. T-cell fail to propagate (no amplification signals at tumor)
4. Resistance develops via a target-negative clone
5. Pre and post-conditioning cause severe toxicity

- Adoptive transfer + virus injections acts act as catalyst for propagation of "other" T-cells at tumor and local lymph nodes

Other Projects
Efficacy of TILT-123 with CAR-T therapy

Large established subcutaneous ASPC1-CBG-GFP (pancreatic) tumors in NSG mice were treated with mesothelin_redirected CAR-T (SS1-BBz CAR-T) alone or in combination with intratumoral injection of TILT-123.

✓ Oncolytic Adenovirus expressing cytokines (TILT-123) enhances anti-tumor efficacy of mesothelin_redirected CAR-T Cells

✓ It is effective by enhancing T cell proliferation, persistence, function and infiltration to the tumor

✓ T cells from mice treated with the combination of O-Ad and CAR-T expressed lower levels of inhibitory molecules (PD-1, LAG3) comparing to those treated with CAR-T alone

TILT-123 with anti-PD-1-antibody

PRE-CLINICAL

Ad5-CMV-mTNFa/Ad5-CMV-mIL2 viruses delivered once by IT with 5 times of aPD1-antibody (0,1 mg/mouse every 3 days) - studied in B16.OVA melanoma tumors in C57BL/6 mice. Treatment was started 10 or 11 days after tumor engraftment.

- Data was confirmed in a repeated experiment
- A third experiment is ongoing with more controls and full dose virus and aPD1

CLINICAL

- Phase I planned with Professor Robert Andtbacka (Salt Lake City)
- Next Steps:
 - Clinical anti-PD1 partner sought
 - FDA Pre-IND meeting planned

Conclusion

- Enabling T-cell therapy of solid tumors via oncolytic viruses
- Synergistic with all T-cell therapy strategies
- TILT technology is based on 290 patients treated with 10 oncolytic viruses 2007-12 (ATAP, human data) and research conducted by Univ. of Helsinki CGTG in 2002-2016
- Lead product TILT-123 is a preclinical stage TNFα/IL2 armed oncolytic adenovirus

- EMA Scientific Advice & ATMP classification obtained
- First Phase I trial will start in 2018 with TILs (funded)
- Looking for clinical partners for 2nd and 3rd trials
THANK YOU FOR YOUR ATTENTION

TILT Biotherapeutics Ltd
Haartmaninkatu 3
00290 Helsinki - FIN

www.tiltbio.com
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATAP</td>
<td>Hemminki O et al. OncoTarget. 2015.</td>
<td>Immunological data from cancer patients treated with Ad5/3-E2F-Δ24-GMCSF suggests utility for tumor immunotherapy. Safety of the adenovirus backbone (Ad5/3-E2F-Δ24-) in humans. Ad5/3-E2F-Δ24-GMCSF (CGTG-602) was used in 13 patients with solid tumors refractory to standard therapies. The virus backbone of CGTG-602 is quite similar to TILT-123 (the only difference being the transgenes) and thus the safety data is relevant with regard to TILT-123</td>
</tr>
<tr>
<td>TILT 1 Preclin</td>
<td>Tähtinen et al. CIR. 2015.</td>
<td>Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor. Can adenovirus overcome resistance of tumor to adoptive T-cell therapy? Ad5-viruses delivered by IT studied in B16.OVA melanoma tumors in C57BL/6 mice with adoptive ovalbumin specific CD8+ T-cell therapy (OT-I) → Enhanced antitumor efficacy, increased levels of TILs, enhanced maturation of APCs, epitope spreading → Proof-of-mechanism data on combining adoptive T-cell therapy with adenovirotherapy</td>
</tr>
<tr>
<td>TILT 2 Preclin</td>
<td>Tähtinen et al. Plos One. 2015.</td>
<td>Favorable alteration of tumor microenvironment by immunomodulatory cytokines for efficient T-cell therapy in solid tumors. Which cytokine(s) are the most useful for arming the adenovirus to be used as an enabling technology for adoptive T cell therapy in solid tumors? Several FDA/EMA approved cytokines studied for their capacity to favorably manipulate the effector-suppressor immune cell ratio in favor of efficient anti-tumor response in B16.OVA melanoma C57BL/6 mice → TNFa & IL-2 selected due to their favorable effects</td>
</tr>
<tr>
<td>TILT 3 Preclin</td>
<td>Siurala et al. Mol Ther. 2016.</td>
<td>Adenoviral delivery of tumornecrosis factor alpha and interleukin-2 enables successful adoptive cell therapy of immunosuppressive melanoma. Can the cytokine-coding adenoviruses improve the efficacy of adoptive T-cell therapy? Ad5-virus coding for TNFa and IL2 delivered by IT injection studied in B16.OVA melanoma tumors in C57BL/6 mice with adoptive T-cell therapy (OT-I) → Improved antitumor efficacy with adenoviruses coding for TNFa and IL2 when compared with T-cell therapy alone or the virus alone</td>
</tr>
<tr>
<td>TILT 4 Preclin</td>
<td>Siurala et al. OncoImmunology. 2016.</td>
<td>Syngenic Syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting. Can oncolytic adenoviruses in improve the efficacy of adoptive T-cell therapy? → Pancreatic cancer (HapT1) and melanoma (RPMI 1846) specific TILs exhibited tumor specific cytotoxic activity with the best effect seen in combination with Ad5-virus in Syrian hamsters (allowing semi-permissive replication of human adenovirus)</td>
</tr>
<tr>
<td>Reference</td>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>TILT 5 Preclin</td>
<td>Havunen et al. Mol Ther Oncolytics. 2017.</td>
<td>Oncolytic Adenoviruses Armed with Tumor Necrosis Factor alpha and Interleukin-2 Enable Successful Adoptive Cell Therapy with Tumor Infiltration Lymphocytes. Can the cytokine-coding oncolytic adenoviruses improve the efficacy of adoptive T-cell therapy? Studied in vitro and vivo in human lung and ovarian cancer cell lines, Syrian hamster pancreatic cancer and leiomyosarcoma. -oncolytic activity, biologically active cytokines, dose dependent antitumor efficacy, improved curative efficacy of TIL therapy, immunological memory shown (\rightarrow \text{Ad5/3-E2F-d24-TNFa-IRES-IL2 or TILT-123 enhance adoptive T-cell therapy by favorable alteration of tumor microenvironment})</td>
</tr>
<tr>
<td>TILT 6 Preclin (collaboration w/ U Penn)</td>
<td>Watanabe et al. ASGCT Oral presentation. May 2016.</td>
<td>Oncolytic Adenovirus armed with cytokines enhances CAR-T cell efficacy in pancreatic tumor model. Can cytokine-coding oncolytic adenovirus enhance efficacy of CAR-T in solid tumors? Pancreatic tumor cell lines targeted by mesothelin specific CAR-T cells (SS1-BBz CAR) in combination with O-Adv; Adv-5/3-d24-IL2 or Adv-5/3-d24-TNF-IL2 (\rightarrow) Combination therapy of O-Adv armed with cytokine(s) and CAR-T cells is effective against solid tumors by enhancing T cell activity</td>
</tr>
<tr>
<td>TILT 7 Preclin</td>
<td>Santos et al. Poster. June 2016 Manuscript in prep.</td>
<td>Safety and superiority of intratumoral administration of IL-2-armed adenoviruses compared with systemic administration of recombinant IL-2 in preclinical rodent tumor models infused with T-cells. Could TIL therapy be improved from the safety and efficacy perspective with local delivery of IL-2? Studied in B16.OVA melanoma C57BL/6 mice and HapT1 hamster tumors (\rightarrow) Better anti-tumor efficacy achieved with adenoviral delivery of IL-2 when compared with systemic administration</td>
</tr>
<tr>
<td>TILT 8 Preclin</td>
<td>Cervera-Carrascon et al. Poster. June 2016.</td>
<td>Evaluation of PD-1 blockade in the context of solid tumor T-cell therapy enabled with tumor necrosis factor alpha and interleukin-2 expressing adenovirus. Could the anti-PD1-antibody treatment be improved with the cytokine-coding adenovirus or with the cytokine-coding adenovirus and TILs? Ad5-viruses delivered by IT studied in B16.OVA melanoma tumors in C57BL/6 mice with adoptive ovalbumin specific CD8+ T-cell therapy (OT-1) (\rightarrow) Positive results on the antitumor efficacy and OS, support further studies and development of combinatory treatments with Ad-viruses</td>
</tr>
</tbody>
</table>
| TILT 9 Preclinical | Zafar et al. Oncoimmunology. 2017. | Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy. Could DC-therapy be improved with the cytokine-coding adenovirus? Tumors treated with Ad5/3-CMV-mCD40L virus plus DCs elicited greater antitumor effect as compared with either treatment alone. Moreover, virally coded CD40L induced activation of DCs, which in turn, lead to the induction of a Th1 immune response and increased tumorspecific T cells.